Taiwan 2024
3D Mapping with Leafmap and MapLibre
- Registration: https://shorturl.at/4J0HW
- Notebook: https://leafmap.org/workshops/Taiwan_2024
- Leafmap: https://leafmap.org
Introduction¶
This notebook is designed for workshop presented at the Center for GIS, RCHSS, Academia Sinica, Taiwan, on August 7, 2024. Part 1 of the workshop will introduce the Earth Engine Python API and the geemap Python package. Part 2 will focus on 3D mapping with Leafmap and MapLibre.
Prerequisites¶
- A Google account to access Google Colab
- A MapTiler API key to access MapTiler vector tiles
Agenda¶
The main topics to be covered in this workshop include:
- Create interactive 3D maps
- 3D terrain, 3D buildings, and 3D indoor mapping
- Visualize local vector and raster datasets
- Visualize geospatial data in the cloud (COG, STAC, PMTiles)
- Add custom components to the map
- Export 3D maps as HTML files for website hosting
Installation¶
Uncomment the following line to install the required Python packages.
# %pip install -U "leafmap[maplibre]" geemap
Import the maplibre mapping backend.
import leafmap.maplibregl as leafmap
Set up API Key¶
To run this notebook, you need to set up a MapTiler API key. You can get a free API key by signing up at https://cloud.maptiler.com/.
# import os
# os.environ["MAPTILER_KEY"] = "YOUR_API_KEY"
m = leafmap.Map()
m
You can customize the map by specifying map center [lon, lat], zoom level, pitch, and bearing.
m = leafmap.Map(center=[-100, 40], zoom=3, pitch=0, bearing=0)
m
To customize the basemap, you can specify the style
parameter. It can be an URL or a string, such as dark-matter
, positron
, voyager
, demotiles
.
m = leafmap.Map(style="positron")
m
To create a map with a background color, use style="background-<COLOR>"
, such as background-lightgray
and background-green
.
m = leafmap.Map(style="background-lightgray")
m
Alternatively, you can provide a URL to a vector style.
style = "https://demotiles.maplibre.org/style.json"
m = leafmap.Map(style=style)
m
Add map controls¶
The control to add to the map. Can be one of the following: scale
, fullscreen
, geolocate
, navigation
.
m = leafmap.Map()
m.add_control("geolocate", position="top-left")
m
Add basemaps¶
You can add basemaps to the map using the add_basemap
method.
m = leafmap.Map()
m.add_basemap("OpenTopoMap")
m
m.add_basemap("Esri.WorldImagery")
m = leafmap.Map()
m
To add basemaps interactively, use the add_basemap
method without specifying the basemap
parameter.
m.add_basemap()
Add XYZ tile layer¶
You can add XYZ tile layers to the map using the add_tile_layer
method.
m = leafmap.Map()
url = "https://tile.openstreetmap.org/{z}/{x}/{y}.png"
m.add_tile_layer(
url, name="OpenStreetMap", attribution="OpenStreetMap", opacity=1.0, visible=True
)
m
Add WMS layer¶
You can add WMS layers to the map using the add_wms_layer
method.
m = leafmap.Map(center=[-74.5447, 40.6892], zoom=8, style="streets")
url = "https://img.nj.gov/imagerywms/Natural2015"
layers = "Natural2015"
m.add_wms_layer(url, layers=layers, before_id="aeroway_fill")
m
m = leafmap.Map(center=[-100.307965, 46.98692], zoom=13, pitch=45, style="3d-hybrid")
url = "https://fwspublicservices.wim.usgs.gov/wetlandsmapservice/services/Wetlands/MapServer/WMSServer"
m.add_wms_layer(url, layers="1", name="NWI", opacity=0.6)
m.add_layer_control(bg_layers=True)
m.add_legend(builtin_legend="NWI", title="Wetland Type")
m
MapTiler styles¶
You can use any named style from MapTiler by setting the style parameter to the name of the style.
m = leafmap.Map(style="streets")
m
m = leafmap.Map(style="satellite")
m
m = leafmap.Map(style="hybrid")
m
m = leafmap.Map(style="topo")
m
3D mapping¶
3D terrain¶
MapTiler provides a variety of basemaps and styles that can be used to create 3D maps. You can use any styles from the MapTiler basemap gallery and prefix the style name with 3d-
. For example, 3d-hybrid
, 3d-satellite
, or 3d-topo
. To use the hillshade only, you can use the 3d-hillshade
style.
m = leafmap.Map(style="3d-hybrid")
m.add_layer_control(bg_layers=True)
m
m = leafmap.Map(style="3d-satellite")
m.add_layer_control(bg_layers=True)
m
m = leafmap.Map(style="3d-topo", exaggeration=1.5, hillshade=False)
m.add_layer_control(bg_layers=True)
m
m = leafmap.Map(style="3d-ocean", exaggeration=1.5, hillshade=True)
m.add_layer_control(bg_layers=True)
m
3D buildings¶
You can add 3D buildings to the map using the add_3d_buildings
method.
m = leafmap.Map(
center=[-74.0066, 40.7135], zoom=16, pitch=45, bearing=-17, style="basic-v2"
)
MAPTILER_KEY = leafmap.get_api_key("MAPTILER_KEY")
m.add_basemap("Esri.WorldImagery", visible=False)
source = {
"url": f"https://api.maptiler.com/tiles/v3/tiles.json?key={MAPTILER_KEY}",
"type": "vector",
}
layer = {
"id": "3d-buildings",
"source": "openmaptiles",
"source-layer": "building",
"type": "fill-extrusion",
"min-zoom": 15,
"paint": {
"fill-extrusion-color": [
"interpolate",
["linear"],
["get", "render_height"],
0,
"lightgray",
200,
"royalblue",
400,
"lightblue",
],
"fill-extrusion-height": [
"interpolate",
["linear"],
["zoom"],
15,
0,
16,
["get", "render_height"],
],
"fill-extrusion-base": [
"case",
[">=", ["get", "zoom"], 16],
["get", "render_min_height"],
0,
],
},
}
m.add_source("openmaptiles", source)
m.add_layer(layer)
m.add_layer_control()
m
m = leafmap.Map(
center=[-74.0066, 40.7135], zoom=16, pitch=45, bearing=-17, style="basic-v2"
)
m.add_basemap("Esri.WorldImagery", visible=False)
m.add_3d_buildings(min_zoom=15)
m.add_layer_control()
m
3D indoor mapping¶
Let's visualize indoor mapping data using the add_geojson
method.
data = "https://maplibre.org/maplibre-gl-js/docs/assets/indoor-3d-map.geojson"
gdf = leafmap.geojson_to_gdf(data)
gdf.explore()
gdf.head()
m = leafmap.Map(
center=(-87.61694, 41.86625), zoom=17, pitch=40, bearing=20, style="positron"
)
m.add_basemap("OpenStreetMap.Mapnik")
m.add_geojson(
data,
layer_type="fill-extrusion",
name="floorplan",
paint={
"fill-extrusion-color": ["get", "color"],
"fill-extrusion-height": ["get", "height"],
"fill-extrusion-base": ["get", "base_height"],
"fill-extrusion-opacity": 0.5,
},
)
m.add_layer_control()
m
import requests
url = (
"https://github.com/opengeos/datasets/releases/download/world/world_cities.geojson"
)
geojson = requests.get(url).json()
m = leafmap.Map(style="streets")
m.add_geojson(geojson, name="cities")
m.add_popup("cities")
m
m = leafmap.Map(style="streets")
source = {"type": "geojson", "data": geojson}
layer = {
"id": "cities",
"type": "symbol",
"source": "point",
"layout": {
"icon-image": "marker_15",
"icon-size": 1,
},
}
m.add_source("point", source)
m.add_layer(layer)
m.add_popup("cities")
m
Line data¶
m = leafmap.Map(center=[-122.486052, 37.830348], zoom=15, style="streets")
source = {
"type": "geojson",
"data": {
"type": "Feature",
"properties": {},
"geometry": {
"type": "LineString",
"coordinates": [
[-122.48369693756104, 37.83381888486939],
[-122.48348236083984, 37.83317489144141],
[-122.48339653015138, 37.83270036637107],
[-122.48356819152832, 37.832056363179625],
[-122.48404026031496, 37.83114119107971],
[-122.48404026031496, 37.83049717427869],
[-122.48348236083984, 37.829920943955045],
[-122.48356819152832, 37.82954808664175],
[-122.48507022857666, 37.82944639795659],
[-122.48610019683838, 37.82880236636284],
[-122.48695850372314, 37.82931081282506],
[-122.48700141906738, 37.83080223556934],
[-122.48751640319824, 37.83168351665737],
[-122.48803138732912, 37.832158048267786],
[-122.48888969421387, 37.83297152392784],
[-122.48987674713133, 37.83263257682617],
[-122.49043464660643, 37.832937629287755],
[-122.49125003814696, 37.832429207817725],
[-122.49163627624512, 37.832564787218985],
[-122.49223709106445, 37.83337825839438],
[-122.49378204345702, 37.83368330777276],
],
},
},
}
layer = {
"id": "route",
"type": "line",
"source": "route",
"layout": {"line-join": "round", "line-cap": "round"},
"paint": {"line-color": "#888", "line-width": 8},
}
m.add_source("route", source)
m.add_layer(layer)
m
Polygon data¶
m = leafmap.Map(center=[-68.137343, 45.137451], zoom=5, style="streets")
geojson = {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[-67.13734351262877, 45.137451890638886],
[-66.96466, 44.8097],
[-68.03252, 44.3252],
[-69.06, 43.98],
[-70.11617, 43.68405],
[-70.64573401557249, 43.090083319667144],
[-70.75102474636725, 43.08003225358635],
[-70.79761105007827, 43.21973948828747],
[-70.98176001655037, 43.36789581966826],
[-70.94416541205806, 43.46633942318431],
[-71.08482, 45.3052400000002],
[-70.6600225491012, 45.46022288673396],
[-70.30495378282376, 45.914794623389355],
[-70.00014034695016, 46.69317088478567],
[-69.23708614772835, 47.44777598732787],
[-68.90478084987546, 47.184794623394396],
[-68.23430497910454, 47.35462921812177],
[-67.79035274928509, 47.066248887716995],
[-67.79141211614706, 45.702585354182816],
[-67.13734351262877, 45.137451890638886],
]
],
},
}
source = {"type": "geojson", "data": geojson}
m.add_source("maine", source)
layer = {
"id": "maine",
"type": "fill",
"source": "maine",
"layout": {},
"paint": {"fill-color": "#088", "fill-opacity": 0.8},
}
m.add_layer(layer)
m
m = leafmap.Map(center=[-68.137343, 45.137451], zoom=5, style="streets")
paint = {"fill-color": "#088", "fill-opacity": 0.8}
m.add_geojson(geojson, layer_type="fill", paint=paint)
m
Multiple geometries¶
m = leafmap.Map(
center=[-123.13, 49.254], zoom=11, style="dark-matter", pitch=45, bearing=0
)
url = "https://raw.githubusercontent.com/visgl/deck.gl-data/master/examples/geojson/vancouver-blocks.json"
paint_line = {
"line-color": "white",
"line-width": 2,
}
paint_fill = {
"fill-extrusion-color": {
"property": "valuePerSqm",
"stops": [
[0, "grey"],
[1000, "yellow"],
[5000, "orange"],
[10000, "darkred"],
[50000, "lightblue"],
],
},
"fill-extrusion-height": ["*", 10, ["sqrt", ["get", "valuePerSqm"]]],
"fill-extrusion-opacity": 0.9,
}
m.add_geojson(url, layer_type="line", paint=paint_line, name="blocks-line")
m.add_geojson(url, layer_type="fill-extrusion", paint=paint_fill, name="blocks-fill")
m
m.layer_interact()
Marker cluster¶
Create a marker cluster layer.
m = leafmap.Map(center=[-103.59179, 40.66995], zoom=3, style="streets")
data = "https://docs.mapbox.com/mapbox-gl-js/assets/earthquakes.geojson"
source_args = {
"cluster": True,
"cluster_radius": 50,
"cluster_min_points": 2,
"cluster_max_zoom": 14,
"cluster_properties": {
"maxMag": ["max", ["get", "mag"]],
"minMag": ["min", ["get", "mag"]],
},
}
m.add_geojson(
data,
layer_type="circle",
name="earthquake-circles",
filter=["!", ["has", "point_count"]],
paint={"circle-color": "darkblue"},
source_args=source_args,
)
m.add_geojson(
data,
layer_type="circle",
name="earthquake-clusters",
filter=["has", "point_count"],
paint={
"circle-color": [
"step",
["get", "point_count"],
"#51bbd6",
100,
"#f1f075",
750,
"#f28cb1",
],
"circle-radius": ["step", ["get", "point_count"], 20, 100, 30, 750, 40],
},
source_args=source_args,
)
m.add_geojson(
data,
layer_type="symbol",
name="earthquake-labels",
filter=["has", "point_count"],
layout={
"text-field": ["get", "point_count_abbreviated"],
"text-size": 12,
},
source_args=source_args,
)
m
Local vector data¶
You can load local vector data interactively using the open_geojson
method.
m = leafmap.Map(center=[-100, 40], zoom=3)
m
url = "https://github.com/opengeos/datasets/releases/download/us/us_states.geojson"
filepath = "data/us_states.geojson"
leafmap.download_file(url, filepath, quiet=True)
m.open_geojson()
import time
m = leafmap.Map(center=[-100, 40], zoom=3, style="streets")
url = "https://github.com/opengeos/datasets/releases/download/us/arc_with_bearings.geojson"
geojson = requests.get(url).json()
bearings = geojson["features"][0]["properties"]["bearings"]
coordinates = geojson["features"][0]["geometry"]["coordinates"][:-1]
m.add_geojson(geojson, name="route")
origin = [-122.414, 37.776]
destination = [-77.032, 38.913]
point = {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {},
"geometry": {"type": "Point", "coordinates": origin},
}
],
}
source = {"type": "geojson", "data": point}
m.add_source("point", source)
layer = {
"id": "point",
"source": "point",
"type": "symbol",
"layout": {
"icon-image": "airport_15",
"icon-rotate": ["get", "bearing"],
"icon-rotation-alignment": "map",
"icon-overlap": "always",
"icon-ignore-placement": True,
},
}
m.add_layer(layer)
m
for index, coordinate in enumerate(coordinates):
point["features"][0]["geometry"]["coordinates"] = coordinate
point["features"][0]["properties"]["bearing"] = bearings[index]
m.set_data("point", point)
time.sleep(0.05)
Update a feature in realtime¶
m = leafmap.Map(center=[-122.019807, 45.632433], zoom=14, pitch=60, style="3d-terrain")
m
import geopandas as gpd
url = "https://maplibre.org/maplibre-gl-js/docs/assets/hike.geojson"
gdf = gpd.read_file(url)
coordinates = list(gdf.geometry[0].coords)
print(coordinates[:5])
source = {
"type": "geojson",
"data": {
"type": "Feature",
"geometry": {"type": "LineString", "coordinates": [coordinates[0]]},
},
}
m.add_source("trace", source)
layer = {
"id": "trace",
"type": "line",
"source": "trace",
"paint": {"line-color": "yellow", "line-opacity": 0.75, "line-width": 5},
}
m.add_layer(layer)
m.jump_to({"center": coordinates[0], "zoom": 14})
m.set_pitch(30)
for coord in coordinates:
time.sleep(0.005)
source["data"]["geometry"]["coordinates"].append(coord)
m.set_data("trace", source["data"])
m.pan_to(coord)
url = "https://github.com/opengeos/datasets/releases/download/raster/landsat.tif"
filepath = "landsat.tif"
leafmap.download_file(url, filepath)
m = leafmap.Map(style="streets")
m.add_raster(filepath, indexes=[3, 2, 1], vmin=0, vmax=100, name="Landsat-321")
m.add_raster(filepath, indexes=[4, 3, 2], vmin=0, vmax=100, name="Landsat-432")
m
m.layer_interact()
url = "https://github.com/opengeos/datasets/releases/download/raster/srtm90.tif"
filepath = "srtm90.tif"
leafmap.download_file(url, filepath)
m = leafmap.Map(style="satellite")
m.add_raster(filepath, colormap="terrain", name="DEM")
m
m.layer_interact()
Cloud Optimized GeoTIFF (COG)¶
You can load Cloud Optimized GeoTIFF (COG) data using the add_cog_layer
method.
m = leafmap.Map()
m.add_basemap("Esri.WorldImagery")
url = (
"https://github.com/opengeos/datasets/releases/download/raster/Libya-2023-09-13.tif"
)
m.add_cog_layer(url, name="COG", attribution="Maxar", fit_bounds=True, nodata=0)
m.add_layer_control()
m
m.layer_interact()
STAC layer¶
You can load SpatioTemporal Asset Catalog (STAC) data using the add_stac_layer
method.
m = leafmap.Map()
url = "https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json"
m.add_stac_layer(url, bands=["B4", "B3", "B2"], name="SPOT", vmin=0, vmax=150, nodata=0)
m
url = "https://open.gishub.org/data/pmtiles/protomaps_firenze.pmtiles"
metadata = leafmap.pmtiles_metadata(url)
print(f"layer names: {metadata['layer_names']}")
print(f"bounds: {metadata['bounds']}")
m = leafmap.Map()
style = {
"version": 8,
"sources": {
"example_source": {
"type": "vector",
"url": "pmtiles://" + url,
"attribution": "PMTiles",
}
},
"layers": [
{
"id": "buildings",
"source": "example_source",
"source-layer": "landuse",
"type": "fill",
"paint": {"fill-color": "steelblue"},
},
{
"id": "roads",
"source": "example_source",
"source-layer": "roads",
"type": "line",
"paint": {"line-color": "black"},
},
],
}
# style = leafmap.pmtiles_style(url) # Use default style
m.add_pmtiles(
url,
style=style,
visible=True,
opacity=1.0,
tooltip=True,
)
m
m.layer_interact()
Overture data¶
You can also visualize Overture data. Inspired by overture-maps.
url = "https://storage.googleapis.com/ahp-research/overture/pmtiles/overture.pmtiles"
metadata = leafmap.pmtiles_metadata(url)
print(f"layer names: {metadata['layer_names']}")
print(f"bounds: {metadata['bounds']}")
m = leafmap.Map(height="800px")
m.add_basemap("Esri.WorldImagery")
style = {
"version": 8,
"sources": {
"example_source": {
"type": "vector",
"url": "pmtiles://" + url,
"attribution": "PMTiles",
}
},
"layers": [
# {
# "id": "admins",
# "source": "example_source",
# "source-layer": "admins",
# "type": "fill",
# "paint": {"fill-color": "#BDD3C7", "fill-opacity": 0.1},
# },
{
"id": "buildings",
"source": "example_source",
"source-layer": "buildings",
"type": "fill",
"paint": {"fill-color": "#FFFFB3", "fill-opacity": 0.5},
},
{
"id": "places",
"source": "example_source",
"source-layer": "places",
"type": "fill",
"paint": {"fill-color": "#BEBADA", "fill-opacity": 0.5},
},
{
"id": "roads",
"source": "example_source",
"source-layer": "roads",
"type": "line",
"paint": {"line-color": "#FB8072"},
},
],
}
# style = leafmap.pmtiles_style(url) # Use default style
m.add_pmtiles(
url,
style=style,
visible=True,
opacity=1.0,
tooltip=True,
)
m
m.layer_interact()
Source Cooperative¶
Let's visualize the Google-Microsoft Open Buildings - combined by VIDA.
url = "https://data.source.coop/vida/google-microsoft-open-buildings/pmtiles/go_ms_building_footprints.pmtiles"
metadata = leafmap.pmtiles_metadata(url)
print(f"layer names: {metadata['layer_names']}")
print(f"bounds: {metadata['bounds']}")
m = leafmap.Map(center=[0, 20], zoom=2, height="800px")
m.add_basemap("Google Hybrid", visible=False)
style = {
"version": 8,
"sources": {
"example_source": {
"type": "vector",
"url": "pmtiles://" + url,
"attribution": "PMTiles",
}
},
"layers": [
{
"id": "buildings",
"source": "example_source",
"source-layer": "building_footprints",
"type": "fill",
"paint": {"fill-color": "#3388ff", "fill-opacity": 0.5},
},
],
}
# style = leafmap.pmtiles_style(url) # Use default style
m.add_pmtiles(
url,
style=style,
visible=True,
opacity=1.0,
tooltip=True,
)
m
m.layer_interact()
3D PMTiles¶
Visualize the global building data in 3D.
url = "https://data.source.coop/cholmes/overture/overture-buildings.pmtiles"
metadata = leafmap.pmtiles_metadata(url)
print(f"layer names: {metadata['layer_names']}")
print(f"bounds: {metadata['bounds']}")
m = leafmap.Map(
center=[-74.0095, 40.7046], zoom=16, pitch=60, bearing=-17, style="positron"
)
m.add_basemap("OpenStreetMap.Mapnik")
m.add_basemap("Esri.WorldImagery", visible=False)
style = {
"layers": [
{
"id": "buildings",
"source": "example_source",
"source-layer": "buildings",
"type": "fill-extrusion",
"filter": [
">",
["get", "height"],
0,
], # only show buildings with height info
"paint": {
"fill-extrusion-color": [
"interpolate",
["linear"],
["get", "height"],
0,
"lightgray",
200,
"royalblue",
400,
"lightblue",
],
"fill-extrusion-height": ["*", ["get", "height"], 1],
},
},
],
}
m.add_pmtiles(
url,
style=style,
visible=True,
opacity=1.0,
tooltip=True,
template="Height: {{height}}<br>Country: {{country_iso}}",
fit_bounds=False,
)
m.add_layer_control()
m
Country: {{country_iso}}", fit_bounds=False, ) m.add_layer_control() m
m = leafmap.Map(center=[0.349419, -1.80921], zoom=3, style="streets")
image = "https://upload.wikimedia.org/wikipedia/commons/7/7c/201408_cat.png"
source = {
"type": "geojson",
"data": {
"type": "FeatureCollection",
"features": [
{"type": "Feature", "geometry": {"type": "Point", "coordinates": [0, 0]}}
],
},
}
layer = {
"id": "points",
"type": "symbol",
"source": "point",
"layout": {
"icon-image": "cat",
"icon-size": 0.25,
"text-field": "I love kitty!",
"text-font": ["Open Sans Regular"],
"text-offset": [0, 3],
"text-anchor": "top",
},
}
m.add_image("cat", image)
m.add_source("point", source)
m.add_layer(layer)
m
Add text¶
m = leafmap.Map(center=[-100, 40], zoom=3, style="streets")
text = "Hello World"
m.add_text(text, fontsize=20, position="bottom-right")
text2 = "Awesome Text!"
m.add_text(text2, fontsize=25, bg_color="rgba(255, 255, 255, 0.8)", position="top-left")
m
Add GIF¶
m = leafmap.Map(center=[-100, 40], zoom=3, style="positron")
image = "https://i.imgur.com/KeiAsTv.gif"
m.add_image(image=image, width=250, height=250, position="bottom-right")
text = "I love sloth!🦥"
m.add_text(text, fontsize=35, padding="20px")
image2 = "https://i.imgur.com/kZC2tpr.gif"
m.add_image(image=image2, bg_color="transparent", position="bottom-left")
m
Add HTML¶
m = leafmap.Map(center=[-100, 40], zoom=3, style="positron")
html = """
<html>
<style>
body {
font-size: 20px;
}
</style>
<body>
<span style='font-size:100px;'>🚀</span>
<p>I will display 🚁</p>
<p>I will display 🚂</p>
</body>
</html>
"""
m.add_html(html, bg_color="transparent")
m
I will display 🚁
I will display 🚂
""" m.add_html(html, bg_color="transparent") mAdd colorbar¶
dem = "https://github.com/opengeos/datasets/releases/download/raster/srtm90.tif"
m = leafmap.Map(style="streets")
m.add_cog_layer(
dem,
name="DEM",
colormap_name="terrain",
rescale="0, 4000",
fit_bounds=True,
nodata=0,
)
m.add_colorbar(
cmap="terrain", vmin=0, vmax=4000, label="Elevation (m)", position="bottom-right"
)
m
m = leafmap.Map(style="streets")
m.add_cog_layer(
dem,
name="DEM",
colormap_name="terrain",
rescale="0, 4000",
nodata=0,
fit_bounds=True,
)
m.add_colorbar(
cmap="terrain",
vmin=0,
vmax=4000,
label="Elevation (m)",
position="bottom-right",
transparent=True,
)
m
m = leafmap.Map(style="streets")
m.add_cog_layer(
dem,
name="DEM",
colormap_name="terrain",
rescale="0, 4000",
nodata=0,
fit_bounds=True,
)
m.add_colorbar(
cmap="terrain",
vmin=0,
vmax=4000,
label="Elevation (m)",
position="bottom-right",
width=0.2,
height=3,
orientation="vertical",
)
m
Add legend¶
m = leafmap.Map(center=[-100, 40], zoom=3, style="positron")
m.add_basemap("Esri.WorldImagery")
url = "https://www.mrlc.gov/geoserver/mrlc_display/NLCD_2021_Land_Cover_L48/wms"
layers = "NLCD_2021_Land_Cover_L48"
m.add_wms_layer(url, layers=layers, name="NLCD 2021")
m.add_legend(
title="NLCD Land Cover Type",
builtin_legend="NLCD",
bg_color="rgba(255, 255, 255, 0.5)",
position="bottom-left",
)
m
m = leafmap.Map(center=[-100, 40], zoom=3, style="positron")
m.add_basemap("Esri.WorldImagery")
url = "https://fwspublicservices.wim.usgs.gov/wetlandsmapservice/services/Wetlands/MapServer/WMSServer"
m.add_wms_layer(url, layers="1", name="NWI", opacity=0.6)
m.add_layer_control()
m.add_legend(builtin_legend="NWI", title="Wetland Type")
m
m = leafmap.Map(center=[-100, 40], zoom=3, style="positron")
m.add_basemap("Esri.WorldImagery")
url = "https://www.mrlc.gov/geoserver/mrlc_display/NLCD_2021_Land_Cover_L48/wms"
layers = "NLCD_2021_Land_Cover_L48"
m.add_wms_layer(url, layers=layers, name="NLCD 2021")
legend_dict = {
"11 Open Water": "466b9f",
"12 Perennial Ice/Snow": "d1def8",
"21 Developed, Open Space": "dec5c5",
"22 Developed, Low Intensity": "d99282",
"23 Developed, Medium Intensity": "eb0000",
"24 Developed High Intensity": "ab0000",
"31 Barren Land (Rock/Sand/Clay)": "b3ac9f",
"41 Deciduous Forest": "68ab5f",
"42 Evergreen Forest": "1c5f2c",
"43 Mixed Forest": "b5c58f",
"51 Dwarf Scrub": "af963c",
"52 Shrub/Scrub": "ccb879",
"71 Grassland/Herbaceous": "dfdfc2",
"72 Sedge/Herbaceous": "d1d182",
"73 Lichens": "a3cc51",
"74 Moss": "82ba9e",
"81 Pasture/Hay": "dcd939",
"82 Cultivated Crops": "ab6c28",
"90 Woody Wetlands": "b8d9eb",
"95 Emergent Herbaceous Wetlands": "6c9fb8",
}
m.add_legend(
title="NLCD Land Cover Type",
legend_dict=legend_dict,
bg_color="rgba(255, 255, 255, 0.5)",
position="bottom-left",
)
m
Add video¶
The urls
value is an array. For each URL in the array, a video element source will be created. To support the video across browsers, supply URLs in multiple formats.
The coordinates
array contains [longitude, latitude] pairs for the video corners listed in clockwise order: top left, top right, bottom right, bottom left.
m = leafmap.Map(
center=[-122.514426, 37.562984], zoom=17, bearing=-96, style="satellite"
)
urls = [
"https://static-assets.mapbox.com/mapbox-gl-js/drone.mp4",
"https://static-assets.mapbox.com/mapbox-gl-js/drone.webm",
]
coordinates = [
[-122.51596391201019, 37.56238816766053],
[-122.51467645168304, 37.56410183312965],
[-122.51309394836426, 37.563391708549425],
[-122.51423120498657, 37.56161849366671],
]
m.add_video(urls, coordinates)
m.add_layer_control()
m
m = leafmap.Map(center=[-115, 25], zoom=4, style="satellite")
urls = [
"https://data.opengeos.org/patricia_nasa.mp4",
"https://data.opengeos.org/patricia_nasa.webm",
]
coordinates = [
[-130, 32],
[-100, 32],
[-100, 13],
[-130, 13],
]
m.add_video(urls, coordinates)
m.add_layer_control()
m
m = leafmap.Map(
style="positron",
center=(-122.4, 37.74),
zoom=12,
pitch=40,
)
deck_grid_layer = {
"@@type": "GridLayer",
"id": "GridLayer",
"data": "https://raw.githubusercontent.com/visgl/deck.gl-data/master/website/sf-bike-parking.json",
"extruded": True,
"getPosition": "@@=COORDINATES",
"getColorWeight": "@@=SPACES",
"getElevationWeight": "@@=SPACES",
"elevationScale": 4,
"cellSize": 200,
"pickable": True,
}
m.add_deck_layers([deck_grid_layer], tooltip="Number of points: {{ count }}")
m
Multiple Deck.GL layers¶
import requests
data = requests.get(
"https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_10m_airports.geojson"
).json()
m = leafmap.Map(
style="positron",
center=(0.45, 51.47),
zoom=4,
pitch=30,
)
deck_geojson_layer = {
"@@type": "GeoJsonLayer",
"id": "airports",
"data": data,
"filled": True,
"pointRadiusMinPixels": 2,
"pointRadiusScale": 2000,
"getPointRadius": "@@=11 - properties.scalerank",
"getFillColor": [200, 0, 80, 180],
"autoHighlight": True,
"pickable": True,
}
deck_arc_layer = {
"@@type": "ArcLayer",
"id": "arcs",
"data": [
feature
for feature in data["features"]
if feature["properties"]["scalerank"] < 4
],
"getSourcePosition": [-0.4531566, 51.4709959], # London
"getTargetPosition": "@@=geometry.coordinates",
"getSourceColor": [0, 128, 200],
"getTargetColor": [200, 0, 80],
"getWidth": 2,
"pickable": True,
}
m.add_deck_layers(
[deck_geojson_layer, deck_arc_layer],
tooltip={
"airports": "{{ &properties.name }}",
"arcs": "gps_code: {{ properties.gps_code }}",
},
)
m
Google Earth Engine¶
You can use the Earth Engine Python API to load and visualize Earth Engine data.
m = leafmap.Map(
center=[-120.4482, 38.0399], zoom=13, pitch=60, bearing=30, style="3d-terrain"
)
m.add_ee_layer(asset_id="ESA/WorldCover/v200", opacity=0.5)
m.add_legend(builtin_legend="ESA_WorldCover", title="ESA Landcover")
m.add_layer_control()
m
m.layer_interact()
We can also overlay other data layers on top of Earth Engine data layers.
m = leafmap.Map(
center=[-74.012998, 40.70414], zoom=15.6, pitch=60, bearing=30, style="3d-terrain"
)
m.add_ee_layer(asset_id="ESA/WorldCover/v200", opacity=0.5)
m.add_3d_buildings()
m.add_legend(builtin_legend="ESA_WorldCover", title="ESA Landcover")
m
If you have an Earth Engine, you can uncomment the first two code blocks to add any Earth Engine datasets.
# import ee
# ee.Initialize(project="YOUR-PROJECT-ID")
# m = leafmap.Map(center=[-120.4482, 38.03994], zoom=13, pitch=60, bearing=30, style="3d-terrain")
# dataset = ee.ImageCollection("ESA/WorldCover/v200").first()
# vis_params = {"bands": ["Map"]}
# m.add_ee_layer(dataset, vis_params, name="ESA Worldcover", opacity=0.5)
# m.add_legend(builtin_legend="ESA_WorldCover", title="ESA Landcover")
# m.add_layer_control()
# m
To HTML¶
To export the map as an HTML file, use the to_html
method. To avoid exposing your private API key, you should create a public API key and restrict it to your website domain.
# import os
# os.environ["MAPTILER_KEY"] = "YOUR_PRIVATE_API_KEY"
# os.environ["MAPTILER_KEY_PUBLIC"] = "YOUR_PUBLIC_API_KEY"
m = leafmap.Map(
center=[-122.19861, 46.21168], zoom=13, pitch=60, bearing=150, style="3d-terrain"
)
m.add_layer_control(bg_layers=True)
m.to_html(
"terrain.html",
title="Awesome 3D Map",
width="100%",
height="100%",
replace_key=True,
)
m
m = leafmap.Map(
center=[-74.0066, 40.7135], zoom=16, pitch=45, bearing=-17, style="basic-v2"
)
m.add_basemap("Esri.WorldImagery", visible=False)
m.add_3d_buildings(min_zoom=15)
m.add_layer_control()
m.to_html(
"buildings.html",
title="Awesome 3D Map",
width="100%",
height="100%",
replace_key=True,
)
m